

Transitioning from C# to Scala

Using Apache Thrift

and

Twitter Finagle

Steven Skelton
September 19, 2013

Empathica

Empathica provides Customer Experience Management
programs to more than 200 of the world's leading brands:

● 30 million customer surveys annually in 25 languages,

● serving 80,000 locations in over 50 countries.

1 year ago:

– Many separate .Net MVC web applications

– Some Java, but most developers strictly C#

– Never heard of Scala

 Empathica Adopts

Today:

● New web projects use

● C# web projects still exist, too large to port

● Single Scala service providing data layer to all products

– No repeated DB code

– Single API project: versioned, well documented

– Apache Thrift

Apache Thrift

● Open sourced by Facebook in 2007

● Remote Procedure Call (RPC) library

● Supporting clients and servers in
C++, Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#,
Cocoa, JavaScript, Node.js, Smalltalk, OCaml and Delphi

● HTML documentation generator

● Supports both binary and JSON protocols

● Mature, used by a lot of companies/libraries

Why not REST?

● Internal project
– RPC is simpler,

– No benefit in flexible transport

● Consistent across all languages

● Binary transport is more efficient

● No web server - binds to directly to port

Thrift IDL Files

Interface Definition Language:

● Defines all data structures transmitted
between client / server

● Defines all methods exposed by server

● Is used only to generate classes

● Same file used for all languages

● Syntax looks a lot like C

.thrift IDL File

include “Global.thrift”

enum TweetType {
 TWEET,
 RETWEET = 2,
 DM = 0xa,
 REPLY
}

struct Tweet {
 1: required i32 userId;
 2: required string userName;
 3: required string text;
 18: optional TweetType tweetType = TweetType.TWEET;
}

exception TwitterUnavailable {
 1: Global.ErrorMessage message;
}

service Twitter {
 List<Tweet> last20Tweets(),
 /** Post a Tweet to Twitter */
 bool postTweet(1:Tweet tweet) throws (1:TwitterUnavailable unavailable)
}

Twitter made Thrift even better

Finagle
● Generic RPC network stack
● Written in Scala
● Adds Scala idioms to Thrift

– Futures for Async calls,
– Options for Optional fields,
– No Java base types (String, Map, List, Set)

Twitter Scrooge

How?

The only way was to write another Thrift
generator.
● Compatible with all Thrift protocols
● Generates .scala files
● Comes with SBT plugin
● Replaces Thrift's network layer with Netty

Finagle uses Netty

Netty usually benchmarks faster than anything
else out there – I'm referring to NodeJS.

Netty supports:
● Zero-copy buffers
● Streaming and pipelined requests
● SSL

Finagle/Netty also have implementations for:
● MySQL, Redis, Protobuf, Memcached, Kestrel

Connection Management

Finagle adds connection options:

● Connection pooling
● Connection timeouts
● Max request time
● Retries / Failover

Ostrich Statistics and Metrics

Tracks usage and performance metrics for
all Thrift method calls:

● Time series graphs,
● Easy to add custom metrics

– ie: time execution of specific blocks of code

● JSON dumps of JVM memory / thread info
● Ability to export (Graphite, gperftools)

Server Clusters

Clients can:
● Can specify a list of hosts, or
● Zookeeper server(s)

Clients will:
● load balance across all available servers,
● redirect requests if a server is down

Apache Zookeeper

● Creates a dynamic server set
– Add new servers, clients use immediately
– Crashed servers removed automatically

Zookeeper does much more
● Will find uses if you have lots of servers

and/or distributed configuration
● Clients for most languages

Lessons Learned

● Twitter stack full of useful code
● Create separate services; thrift supports

multiplexing over a single connection
● Generated classes get their own project,

ours takes 2 minutes to compile
● Finagle is a must have, filling in the

missing functionality for C# is awful
● Problems? Refer to the source, Twitter has

probably already solved it.

Thanks!

Questions?

Steven Skelton
sskelton@empathica.com

http://stevenskelton.ca

